
1 Introduction
This application note describes how to implement High-Definition Multimedia
Interface (HDMI)-Consumer Electronics Control (CEC) functions as a TV set or
a projector that support the HDMI-CEC protocol based on LPC5500 series with
GPIO and SCT used.

CEC is a single-wire bus protocol allowing AV products to discover and
communicate with one another across a system. CEC makes possible global
controls, therefore minimize the number of IR remotes and keypress required
for basic operation of a system. It is specified to operate at low speeds with
minimum processing and memory overhead.

In general, the CEC bus allows all products in the system to potentially discover
and communicate with each other. Also, it enables global-simplified (single
remote) system control in HDMI-interfaced systems.

For more details, see the high-definition multimedia interface
specification (www.hdmi.org).

This application note does not include high-level description of HDMI-CEC protocol but focuses on the physical level
implementation on MCU.

1.1 Glossary
Table 1. Abbreviation

Items Description

HDMI High-Definition Multimedia Interface

(HDMI) Source A device with an HDMI output

(HDMI) Sink A device with an HDMI input

Initiator The device, which is sending, or has just sent a CEC message and, if appropriate, is
waiting for a follower to respond

Follower A device which has just received a CEC message and is required to respond to it

CEC Consumer Electronics Control

Broadcast Message A message sent to logical address 15, that all devices are expected to receive

TV A device with an HDMI input which has the ability to display the input HDMI signal.
Generally, it has no HDMI output.

Table continues on the next page...

Contents

1 Introduction......................................1
1.1 Glossary.......................................1
2 HDMI-CEC...................................... 2
2.1 Overview......................................2
2.2 Bit-level protocol.......................... 2
2.3 Block-level protocol......................4
2.4 Frame-level protocol.................... 5
2.5 Device connectivity and

addressing................................... 5
2.6 CEC message descriptions..........5
3 Implementation................................6
3.1 Overview......................................6
3.2 Hardware connection...................7
3.3 Timer Capture function................ 8
4 Example and Test......................... 11
5 Conclusion.....................................12
6 Revision history.............................12

AN12732
HDMI-CEC Implementation on LPC5500 Series
Rev. 1 — 10/2020 Application Note

http://www.hdmi.org

Table 1. Abbreviation (continued)

Destination The target device for a CEC message

Source Device The device which is currently providing an AV stream via HDMI

Logical address A unique address assigned to each device

2 HDMI-CEC

2.1 Overview
The CEC bus is a one-wire, “party line” protocol that connects up to ten (10) AV devices through standard HDMI cables. The
CEC protocol includes automatic mechanisms for physical address (topology) discovery, (product-based) logical addressing,
arbitration, retrans-mission, broadcasting, and routing control. A typical application of HDMI system is shown in Figure 1, where
all the HDMI devices are connected together through the HDMI cables serially. The HDMI-CEC bus connects up to 10 HDMI
AV devices.

Figure 1. HDMI-CEC system

2.2 Bit-level protocol
Communication is always between an initiator and one (or more) follower(s). Both ini-tiator and follower(s) can assert bits. The
initiator-asserted bits provide data, while the follower-initiated bits provide acknowledgment. Bit-level communication rates is less
than 500 bits/second. The messages begin with one long start bit and are immediately followed by a number of shorter data bits.
When CEC bus is idle, the bus level is always pulled to VCC.

2.2.1 Start Bit timing
The start bit pulse format is shown in Figure 2. It identifies the start of a new frame, a low-pulse plus a high-pulse within a certain
validated duration.

NXP Semiconductors
HDMI-CEC

HDMI-CEC Implementation on LPC5500 Series, Rev. 1, 10/2020
Application Note 2 / 13

Figure 2. Start Bit Timing

2.2.2 Data Bit timing
The data bit is followed by start bit, each data bit is consisting of a low duration and a high duration. The high to low transition at
the end of data bit is the start of next data bit and only occurs if there is a following data bit. After transmitting the final bit, the CEC
line remains high as shown in Figure 3.

Figure 3. Data Bit timing

2.2.3 Acknowledgment Bit timing
Acknowledgment bit is also called asserted bit, the data bit is sent by initiator, and the follower where the follower may assert the
bit to logical 0 to acknowledge a data block. The initiator outputs a logical 1, therefore allowing the follower to change the CEC
state by pulling the line during the safe sample period and making the Acknowledge (ACK) bit from logical 1 to logical 0. So, it is
the follower that controls the acknowledgment bit‘s logical level, as shown in Figure 4.

NXP Semiconductors
HDMI-CEC

HDMI-CEC Implementation on LPC5500 Series, Rev. 1, 10/2020
Application Note 3 / 13

Figure 4. Acknowledgment Bit Timing

2.3 Block-level protocol
Bits are grouped into 10-bit header and data blocks. Both header and data blocks include 8-bits of data along with End of Message
(EOM) and ACK bits. The EOM bit signals the final block in a message. A ‘0’ indicates that one or more blocks follow and a ‘1’
indicates that the message is complete.

Figure 5. Data block

EOM:

• 0: one or more data blocks follow.

• 1: the message is complete, no more data.

ACK:

• 0: follower asked for the message.

• 1: no acknowledgment.

The header block is identical to data block. It is followed by start bit immediately as the first “data block” in a message. The header
block’s 8 data bit indicates the initiator address and destination address, as shown in Figure 6.

Figure 6. Header block

NXP Semiconductors
HDMI-CEC

HDMI-CEC Implementation on LPC5500 Series, Rev. 1, 10/2020
Application Note 4 / 13

2.4 Frame-level protocol
HDMI CEC messages are sent using frames. Each CEC frame consists of a start bit, a header block, and possibly data blocks.
An example of HDMI-CEC frame is shown in Figure 7.

Figure 7. HDMI-CEC frame

The first data block followed by header block called opcode, then followed by zero, one or many data blocks indicating the actual
data transferred.

2.5 Device connectivity and addressing
To allow CEC to address specific physical devices and control switches, all devices shall have a physical address. This
connectivity must be worked out whenever a new device is added to the system. The physical address discovery process uses
only DDC/EDID mechanism and can be applied to all HDMI sinks and sources.

The CEC line is directly connected to all nodes on the network. After discovering their own physical address, the CEC device
transmits their physical and logical address to all other devices, therefore, allows the system to create a map of netwDork.

Figure 8. Physical Address within a HDMI system

2.6 CEC message descriptions
Table 2 shows the most common used commands in CEC message. For more opcodes, parameters and description or the other
message, see the HDMI-CEC specification.

NXP Semiconductors
HDMI-CEC

HDMI-CEC Implementation on LPC5500 Series, Rev. 1, 10/2020
Application Note 5 / 13

Table 2. CEC message description

Opcode Value Description Parameters Response

<Polling Message> - Used by any device for
device discovery

None Set a low-level Ack

<Give Physical Address> 0x83 A request to a device to
return its physical address

None Report
physical address

<Report Physical address> 0x84 Used to inform all other
devices of the mapping
between physical and
logical addresses of

the initiator

Physical address and
device type

-

<Active Source> 0x82 Used by a new source to
indicate that it has started

to transmit a stream or
used in response to a

<Request Active Source>

[Physical Address] A current active
source should

take appropriate
action. TV should

switch to the
appropriate input.
Any CEC switches
to the appropriate
input and comes
out of standby
if necessary

<Image View On> 0x04 Sent by a source device
to the TV whenever it
enters the active state

(alternatively, it may send
<Text View On>)

None Turn on (if not
on). If in ‘Text

Display’ state, the
TV enters ‘Image

Display’ state

<Give Device Power Status> 0x8F Used to determine the
current power status of a

target device

None <Report
Power Status>

<Report Power Status> 0x90 Used to inform a requesting
device of the current

power status

[Power Status] -

3 Implementation

3.1 Overview
This section describes how to use LPC5500 series to implement low-level CEC bus protocol. The LPC5500 series are Arm
Cortex®-M33-based microcontrollers for embedded applications. These devices include up to 320 kB of on-chip SRAM and up
to 640 kB on-chip flash. It has SCT timer that can be used to capture external bus edge changes. We use this feature to capture
raising and falling time in CEC bus.

NXP Semiconductors
Implementation

HDMI-CEC Implementation on LPC5500 Series, Rev. 1, 10/2020
Application Note 6 / 13

Table 3. MCU peripheral resource used

IP used Description

SCT Capture edge timestamp

GPIO Output and input CEC data

UART Display log

3.2 Hardware connection
To demonstrate the CEC functions on LPC500 series, a Chromecast is used as initiator and an HDMI splitter is used to develop
the system hardware. The system structure for the demonstration is shown in Figure 9. Note that the MCU emulates TV’s
CEC controller.

The HDMI-CEC pin is connected to two pins on LPC5500 series, one is used as GPIO output and the other is used as GPIO input
and SCT input. A default debug console in SDK is also enabled for log display.

Figure 9. Physical address within an HDMI system

Figure 10 shows CEC pin and GND pin definition in HDMI connector.

NXP Semiconductors
Implementation

HDMI-CEC Implementation on LPC5500 Series, Rev. 1, 10/2020
Application Note 7 / 13

Figure 10. CEC pin and GND definition in HDMI connector

3.3 Timer Capture function
The most important function implemented in CEC protocol is input capture feature. This feature can be implemented by
SCT module.

The State Configurable Timer (SCTimer/PWM) is a peripheral that is unique to NXP Semiconductors. It can operate like most
traditional timers, but also adds a state machine to give it a higher degree of configurability and control. This allows the SCT
to be configured as multiple PWMs, a PWM with dead-time control, and a PWM with reset capability, in addition to many
other configurations that cannot be duplicated with traditional timers. Once the SCTimer/PWM has been configured, it can run
autonomously from the microcontroller core, unless the SCTimer/PWM interrupt has been enabled which requires the core to
service the interrupt.

This application note describes how to configure the SCT into a simple usage for input capture, which calculates the time span
between two edge changes. Three SCT event registers, two capture registers, and one match register are used, as shown in the
following table.

Table 4. SCT resources used

SCT resources Description

EVT0 Configured as rising edge trigger

EVT1 Configured as falling edge trigger

EVT2 Configured as match trigger, used as timeout control

MAT0 Used for timeout counting

CAP0 Works with EVT0 to capture rising edge time

CAP1 Works with EVT1 to capture falling edge time

Before configuring SCT resource registers, capturing and matching register in SCT, SCT, and set clock diver need to be initialzed.
Follow the steps below:

1. The SCT input clock is from BusClock, which is 150 MHz. Divide it by 150, so SCT clock is 150 Mhz/150 = 1 MHz.

uint32_t sctimerClock = CLOCK_GetFreq(kCLOCK_BusClk);

 CLOCK_EnableClock(kCLOCK_Sct0);
 CLOCK_EnableClock(kCLOCK_InputMux);

 INPUTMUX->SCT0_INMUX[SCT_GPI0] = 7;

 SCT0->CONFIG |= SCT_CONFIG_UNIFY_MASK;

 /* config presclar

NXP Semiconductors
Implementation

HDMI-CEC Implementation on LPC5500 Series, Rev. 1, 10/2020
Application Note 8 / 13

 */SCT0->CTRL &= ~SCT_CTRL_PRE_L_MASK;
 SCT0->CTRL |= SCT_CTRL_PRE_L(149);

2. Configure SCT match and event register. MAT0 is used for timeout time setting, in this demo code.

3. Set the match register to 10000 which equals to 1M/10000 = 100 ms.

4. Set EVT0 as input rising edge trigger and EVT1 as input falling edge trigger.

5. Set EVT2 as match trigger, when SCT timer reaches MAT0 value. EVT2 is triggered and is used as timeout event flag.

SCT0->MATCH[MAT_INDEX] = 10000;
SCT0->MATCHREL[MAT_INDEX] = 10000;

/* EVT0 config */
SCT0->EV[EVT0_INDEX].CTRL = SCT_EV_CTRL_MATCHSEL(MAT_INDEX) | SCT_EV_CTRL_COMBMODE(2) |
SCT_EV_CTRL_IOCOND(1) | SCT_EV_CTRL_IOSEL(SCT_GPI0); /* raising */
SCT0->EV[EVT0_INDEX].STATE = (1 << 0);

/* EVT1 config */
SCT0->EV[EVT1_INDEX].CTRL = SCT_EV_CTRL_MATCHSEL(MAT_INDEX) | SCT_EV_CTRL_COMBMODE(2) |
SCT_EV_CTRL_IOCOND(2) | SCT_EV_CTRL_IOSEL(SCT_GPI0); /* falling */
SCT0->EV[EVT1_INDEX].STATE = (1 << 0);

/* EVT2 */
SCT0->EV[EVT2_INDEX].CTRL = SCT_EV_CTRL_MATCHSEL(MAT_INDEX) | SCT_EV_CTRL_COMBMODE(1) |
SCT_EV_CTRL_IOCOND(2) | SCT_EV_CTRL_IOSEL(SCT_GPI0); /* ti */
SCT0->EV[EVT2_INDEX].STATE = (1 << 0);

Finally, perform the below miscellaneous settings:

1. Configure CAP0 and CAP1 as input capture function.

2. When EVT0 and EVT1 are triggered, reset SCT timer.

3. Start SCT timer.

In this application, SCT state is always 0; SCT state function is not used.

 NOTE

/* use as cap */
SCT0->REGMODE = (1<<CAP0_INDEX) | (1<<CAP1_INDEX);
SCT0->CAPCTRL[CAP0_INDEX] = (1<<EVT0_INDEX);
SCT0->CAPCTRL[CAP1_INDEX] = (1<<EVT1_INDEX);
/* Reset Counter L when Counter L event occurs */SCT0->LIMIT |=
 SCT_LIMIT_LIMMSK_L((1<<EVT0_INDEX) | (1<<EVT1_INDEX));
/* Start the L counter */
SCT0->CTRL &= ~SCT_CTRL_HALT_L_MASK;

4. Create a wait_lv function used to return the time between two edge changes:

static uint32_t wait_lv(uint8_t lv)
{
 int cnt = 0;
 cnt = sct_wait_lv(lv) / 100;

NXP Semiconductors
Implementation

HDMI-CEC Implementation on LPC5500 Series, Rev. 1, 10/2020
Application Note 9 / 13

 return cnt;
}

The CEC bit implementation API is as follows:

static uint8_t get_bit(uint8_t *val)
{
 uint32_t dt0, dt1;
 uint32_t ret = 0;
 dt0 = wait_lv(0);
 dt1 = wait_lv(1);
 if(abs(dt0 - CEC_TIMING_BIT0_LOW) < CEC_TIMING_TOR && abs(dt1 - CEC_TIMING_BIT0_HIGH)
< CEC_TIMING_TOR)
 {
 *val = 0;
 ret = 0;
 }
 else if(abs(dt0 - CEC_TIMING_BIT1_LOW) < CEC_TIMING_TOR && abs(dt1 - CEC_TIMING_BIT1_HIGH)
< CEC_TIMING_TOR)
 {
 *val = 1;
 ret = 0;
 }
else
 {
 ret = 1;
 }
 return ret;
}
static void
 set_bit(uint8_t val)
{
if(val)
 {
 pin_write(0);
 DelayUs(CEC_TIMING_BIT1_LOW*100);
 pin_write(1);
 DelayUs(CEC_TIMING_BIT1_HIGH*100);
 }
else
{ pin_write(0);
 DelayUs(CEC_TIMING_BIT0_LOW*100);
 pin_write(1);
 DelayUs(CEC_TIMING_BIT0_HIGH*100);
}
}
static uint32_t get_start_bit(void)
{
 uint32_t dt0, dt1;

 dt0 = wait_lv(0);
 dt0 = wait_lv(0);
 dt1 = wait_lv(1);
 if(abs(dt0 - CEC_TIMING_START_LOW) < CEC_TIMING_TOR && abs(dt1 - CEC_TIMING_START_HIGH)
< CEC_TIMING_TOR)
 {
 return 0;
 }

NXP Semiconductors
Implementation

HDMI-CEC Implementation on LPC5500 Series, Rev. 1, 10/2020
Application Note 10 / 13

 return 1;
}

4 Example and Test
In this demo, the Google Chromecast acts as initiator, when there is no other CEC device on the bus. The Chromecast polls bus
by sending header blocks several times as shown in Figure 11.

Figure 11. Physical Address within a HDMI system

The default CEC address for MCU is 0x00. When MCU connects to CEC bus, it responds to the destination address 0x00. Then,
the Chromecast detects that the ACK bit is pull down and sends the following data block, as shown in Figure 12.

Figure 12. Chromecast send: GiveDevicePowerStatus(0x8F) frame

Then, MCU receives opcode, GiveDevicePowerStatus, and sends acknowledgment frame. This finishes a complete CEC bus
transition, as shown in Figure 13.

Figure 13. MCU Responds: Report Power Status(0x90) frame

MCU monitors CEC bus activity and displays log on UART:

NXP Semiconductors
Example and Test

HDMI-CEC Implementation on LPC5500 Series, Rev. 1, 10/2020
Application Note 11 / 13

Figure 14. MCU UART log

5 Conclusion
This AN describes how to implement HDMI-CEC low-level protocol on LC5500 series. It also provides example code
and instructions on hardware and software setup. It introduces the basic usage of SCT, a versatile state timer unique to
NXP Semiconductor.

6 Revision history

Revision number Date Substantive changes

0 02/2020 Initial release

1 10/2020 Replaced LPC55S6x/LPC55s2x/LPC55s1x with
LPC5500 series

NXP Semiconductors
Conclusion

HDMI-CEC Implementation on LPC5500 Series, Rev. 1, 10/2020
Application Note 12 / 13

How To Reach Us

Home Page:

nxp.com

Web Support:

nxp.com/support

Information in this document is provided solely to enable system and software implementers
to use NXP products. There are no express or implied copyright licenses granted hereunder
to design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products
for any particular purpose, nor does NXP assume any liability arising out of the application
or use of any product or circuit, and specifically disclaims any and all liability, including
without limitation consequential or incidental damages. “Typical” parameters that may be
provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including “typicals,”
must be validated for each customer application by customer's technical experts. NXP does
not convey any license under its patent rights nor the rights of others. NXP sells products
pursuant to standard terms and conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.

While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C‑5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C‑Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, UMEMS, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP
B.V. All other product or service names are the property of their respective owners. AMBA,
Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro,
µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries)
in the US and/or elsewhere. The related technology may be protected by any or all of patents,
copyrights, designs and trade secrets. All rights reserved. Oracle and Java are registered
trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word marks and
the Power and Power.org logos and related marks are trademarks and service marks licensed
by Power.org.

© NXP B.V. 2020. All rights reserved.

For more information, please visit: http://www.nxp.com
For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 10/2020
Document identifier: AN12732

http://www.nxp.com
http://www.nxp.com/support
http://www.nxp.com/SalesTermsandConditions

	Contents
	1 Introduction
	1.1 Glossary

	2 HDMI-CEC
	2.1 Overview
	2.2 Bit-level protocol
	2.2.1 Start Bit timing
	2.2.2 Data Bit timing
	2.2.3 Acknowledgment Bit timing

	2.3 Block-level protocol
	2.4 Frame-level protocol
	2.5 Device connectivity and addressing
	2.6 CEC message descriptions

	3 Implementation
	3.1 Overview
	3.2 Hardware connection
	3.3 Timer Capture function

	4 Example and Test
	5 Conclusion
	6 Revision history

